Even before there was a World Wide Web, there was an Internet of Things.
In 1991, a couple of researchers at the University of Cambridge Computer Lab set out to solve the problem of making fruitless quests through the building to a shared coffee pot in the Lab's Trojan Room. Using a video camera, a frame grabbing card, and a Motorola 68000 series-based computer running VME, they created a networked sensor that could show the current state of the pot. First configured as an X-Windows application, the Trojan Coffee Pot server was converted to HTTP in 1993, becoming one of the early stars of the Internet. It was soon joined by other networked sensors, including a number of hot tubs.
Today, millions of devices expose what they see, hear, and otherwise sense to the Internet. And thanks to cheap embedded systems, they don't need an old VME or Windows box to do it. Billions of other devices that defy the usual definition of "computer" are communicating over networks, almost entirely with other machines. These "Internet of Things" (IoT) devices send telemetry to and receive instructions from software both nearby and on far-flung servers. Software and sensors are controlling more of what once was done by humans, often more efficiently, conveniently, and cheaply.
This practice is changing how we interact with the physical world. We talk to our televisions and they listen, thanks to embedded sensors and voice processing chips that can tap into the cloud for corrections. We drive down the road and sensors gather data from our cell phones to measure the flow of traffic. Our cars have mobile apps to unlock them. Health devices send data back to doctors, and wristwatches let us send our pulse to someone else. The digital has become physical.
It has been only eight years since the smartphone emerged, introducing the new age of always-on mobile connectivity, and networked devices now already outnumber the people on the planet. By some estimates, within the next five years, the number of devices connected to the Internet will outnumber the people on the planet by over seven to one—50 billion machines, ranging from networked sensors to industrial robots.
Inexpensive computing power, cheap or free connectivity, and the relative ease with which new software and chips are making connecting will make it possible for governments, companies, and even individuals to collect detailed data from IoT devices and automate them in some way. It will be the things' Internet; we'll just be living in it.
But given the state of IoT today, that might be a bumpy tenancy if certain issues aren't ironed out now. Security, privacy, and reliability concerns are the main barriers to a sudden arrival of some singularity where we all live as happy cogs in an IoT machine world. So how will the human social order take to a world of persistent networked everything
No comments:
Post a Comment